Bézout rings with almost stable range 1

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bézout rings with almost stable range 1 Warren

Elementary divisor domains were defined by Kaplansky [I. Kaplansky, Elementary divisors and modules, Trans. Amer. Math. Soc. 66 (1949) 464–491] and generalized to rings with zero-divisors by Gillman and Henriksen [L. Gillman, M. Henriksen, Some remarks about elementary divisor rings, Trans. Amer. Math. Soc. 82 (1956) 362–365]. In [M.D. Larsen, W.J. Lewis, T.S. Shores, Elementary divisor rings a...

متن کامل

Bézout Rings with Almost Stable Range 1 are Elementary Divisor Rings

Abstract. In this article we revisit a problem regarding Bézout domains, namely, whether every Bézout domain is an elementary divisor domain. Elementary divisor domains where defined by Kaplansky [13] and generalized to rings with zero-divisors by Gillman and Henriksen [7]. Later, in [14] it was shown that a domain R is an elementary divisor domain if and only if every finitely presented R-modu...

متن کامل

Pseudo-almost valuation rings

The aim of this paper is to generalize the‎‎notion of pseudo-almost valuation domains to arbitrary‎ ‎commutative rings‎. ‎It is shown that the classes of chained rings‎ ‎and pseudo-valuation rings are properly contained in the class of‎ ‎pseudo-almost valuation rings; also the class of pseudo-almost‎ ‎valuation rings is properly contained in the class of quasi-local‎ ‎rings with linearly ordere...

متن کامل

Omega-almost Boolean rings

In this paper the concept of an $Omega$- Almost Boolean ring is introduced and illistrated how a sheaf of algebras can be constructed from an $Omega$- Almost Boolean ring over a locally Boolean space.

متن کامل

Exchange Rings Having Stable Range One

We investigate the sufficient conditions and the necessary conditions on an exchange ring R under which R has stable range one. These give nontrivial generalizations of Theorem 3 of V. P. Camillo and H.-P. Yu (1995), Theorem 4.19 of K. R. Goodearl (1979, 1991), Theorem 2 of R. E. Hartwig (1982), and Theorem 9 of H.-P. Yu (1995). 2000 Mathematics Subject Classification. Primary 16E50, 19B10. An ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Pure and Applied Algebra

سال: 2008

ISSN: 0022-4049

DOI: 10.1016/j.jpaa.2007.05.026